LAIT - IMMUNOTHERAPY LABORATORY
Nosso trabalho
Nosso laboratório se concentra nas seguintes áreas:
01
Respostas imunes em infecções e vacinação
A resposta imune às infecções virais é inerentemente diferente daquela gerada pelas vacinas. Os vírus tentam continuamente escapar do sistema imunológico; as vacinas são projetadas para minimizar os mecanismos de evasão e ativar a imunidade. Nossa pesquisa visa elucidar os mecanismos subjacentes à capacidade do corpo de reconhecer e eliminar infecções virais, com o objetivo final de desenvolver novas estratégias para a prevenção (vacinação) e tratamento de doenças virais.
Empregamos uma variedade de técnicas de ponta, incluindo citometria de fluxo multiparamétrica, classificação de células, sequenciamento de alto rendimento, análise de célula única e ensaios funcionais, para investigar as interações complexas entre o sistema imunológico e os patógenos virais. Nossa abordagem multidisciplinar nos permite obter uma compreensão abrangente da resposta imune contra vírus nos níveis molecular e celular.
Projetos associados:
02
Desenvolvimento de Anticorpos Monoclonais
Os anticorpos monoclonais são biomoléculas produzidas em laboratório que imitam os anticorpos naturais produzidos pelo sistema imunológico humano para combater infecções e células anormais.
Por que desenvolver anticorpos monoclonais?
Um novo anticorpo monoclonal é uma nova estrutura a ser patenteada; eles constituem a espinha dorsal de uma plataforma farmacêutica altamente engenhosa. Por serem praticamente idênticos aos anticorpos encontrados naturalmente no corpo humano, apresentam baixa toxicidade. Além disso, eles podem ser projetados para direcionar especificamente certos patógenos ou células cancerígenas para destruição pelo sistema imunológico, para aumentar ou prevenir interações celulares ou para fornecer drogas a certas células, minimizando os efeitos colaterais sistêmicos.
Desenvolver um monoclonal também inclui testar sua atividade em diferentes ensaios; e explorando seu design para minimizar a toxicidade e melhorar a função. Isso é feito com uma combinação de inteligência artificial, biologia molecular e ensaios imunológicos.
Implantação da estrutura para o desenvolvimento de Imunoterápicos para câncer e infecções virais
Agency: FAPERGS
Desenvolvimento de imunoterápicos oncológicos seus testes preditivos de resposta para o SUS
Agency: Ministério da Saúde
03
Testes genéticos para oncologia
Os tumores são caracterizados por uma alta carga mutacional. As mutações tumorais são geralmente caracterizadas como um dos dois tipos: mutações condutoras; e mutações passageiras. A detecção de mutações condutoras em certos tipos de tumores é agora essencial para aumentar significativamente a capacidade de resposta ao tratamento. Uma infinidade de drogas que visam mutações específicas pode agora ser usada para adaptar a farmacoterapia ao tratamento mais adequado para cada paciente. O desenvolvimento de sistemas de sequenciamento de última geração tornou possível detectar essas mutações em larga escala.
No entanto, atualmente, esses exames não são apenas caros, mas também demorados, e não são cobertos pelo Sistema Único de Saúde (SUS). Com isso, o acesso a esses exames fica limitado a quem pode pagar, o que reduz a eficácia do tratamento devido às longas esperas. Portanto, desenvolver um teste rápido e acessível que seja adaptado para o sistema SUS do Brasil é fundamental, e uma meta importante do nosso projeto PRONON 2019.
Projetos associados:
Desenvolvimento de imunoterápicos oncológicos seus testes preditivos de resposta para o SUS
Agency: Ministério da Saúde
Implantação da estrutura para o desenvolvimento de Imunoterápicos para câncer e infecções virais
Agency: FAPERGS
04
Transcriptômica espacial e de células individuais
A biologia de sistemas é uma abordagem especialmente poderosa para estudar sistemas biológicos complexos, como o câncer. Ao analisar as interações entre diferentes componentes biológicos, como genes, proteínas e metabólitos, os estudos de biologia de sistemas podem levar ao desenvolvimento de novos testes genéticos para detecção precoce, diagnóstico e tratamento personalizado do câncer.
Além disso, a biologia de sistemas pode fornecer informações sobre os mecanismos complexos subjacentes ao desenvolvimento e progressão do câncer, incluindo evasão imune e resistência a medicamentos. Ao identificar os principais atores moleculares envolvidos nesses processos, novas estratégias imunoterapêuticas podem ser desenvolvidas para melhorar os resultados dos pacientes. Estudamos a composição celular e as interações no microambiente tumoral e órgãos linfóides, usando a abordagem transcriptômica de célula única, validando os achados após deconvolução em seções de tecido.
Projetos associados:
Desenvolvimento de imunoterápicos oncológicos seus testes preditivos de resposta para o SUS
Agency: Ministério da Saúde
Implantação da estrutura para o desenvolvimento de Imunoterápicos para câncer e infecções virais
Agency: FAPERGS
Leia sobre alguns de nossos projetos...
Novel immune checkpoint therapies for SUS - Funding: FINEP Mais Inovação Brasil Saúde ICTs 2024
In this project, we will proceed with the preclinical development for two innovative medications developed at UFCSPA and advance them into early clinical studies, partnering with other public institutions in Brazil like INCA, UFAL, UFRJ and others in the RS (UNISC, HCPA, Santa Casa). We propose to develop the first anti-immune checkpoint monoclonal antibody (mAb) and the first anti-cancer siRNA therapy for the SUS. We will provide national technological alternatives with high intellectual property value, which reduce treatment and hospitalization costs and offer therapeutic alternatives for incurable tumors. We will conduct functional studies in the non-clinical phase and under GLP conditions for anti-PD-1/anti-PD-L1 mAb for pan-oncology treatment and for a nasal spray based on siRNA-CD73 (already patented in Brazil and the USA) for the treatment of glioblastoma. We will protect the mAbs by patenting them in Brazil and abroad. We will conduct toxicological safety and tolerability tests under GLP conditions with a view to regulatory registration. We will design and conduct a phase I clinical trial for at least one of the proposed therapies.
Precision Oncology at the Federal University of Health - Funding: CNPq and DECIT - Chamada no 33/2024 - Linha 2 - Tecnologias em Saúde Pública de Precisão
In precision oncology, the choice of the best treatment depends on tests that molecularly characterize the patient and the pathology, optimizing efficacy and minimizing costs and adverse events. The patient has dozens of treatment options far beyond conventional anti-proliferative chemotherapy. Targeted drugs focus on specific genetic mutations in oncogenes. Immunotherapy has already focused on the so-called immune "checkpoints", such as PD-1 and PD-L1. These regulate the intensity of T lymphocyte action, so that a healthy individual generates immune responses without affecting normal tissues. In cancer, these checkpoints are co-opted to inhibit anti-tumor immune responses. Immune checkpoint inhibitors (ICIs) are monoclonal antibodies (MAbs), and the combined use of ICIs results in a 60% response in metastatic melanoma. UFCSPA is the only Federal University specialized in Health, directly connected to the Santa Casa Hospital Complex in Porto Alegre, 9 hospitals that perform one million treatments per year, most of them through the SUS. Our goal is to establish a precision oncology hub here, decentralizing these technologies currently focused on the Southeast, and ensuring broad access through the SUS, in a sustainable environment. To this end, we have chosen 4 axes: 1) to validate a panel developed by our group with PRONON funding for the analysis of “driver” mutations by NGS that guide therapy with targeted drugs or MAbs at an affordable cost for the SUS; 2) to expand and consolidate the development of highly complex molecular tests for diagnosis, focusing on leaner panels focused on the tumor type; 3) to characterize molecularly and immunologically the tumors of SUS patients with the aim of identifying new targets for the development of optimized therapies; and 4) to isolate and produce monoclonal antibodies for immune checkpoints and tumors.
Development of precision diagnostics and medications for SUS - funding: FINEP/FNDCT Edital Centros Temáticos 2024
This is an institutional grant led by our lab. Our aim is to Modernize the infrastructure of the only federal university specialized in health in the country for a transformation into a precision medicine “hub”, capable of carrying out sequencing of latest generation and produce recombinant proteins under conditions of Good Laboratory Practices (BPL). To promote the integration of the specialties of researchers and clinicians teaching at the UFCSPA to develop diagnostic tests and produce inputs for diagnoses and innovative medicines, providing national alternatives that meet the demands of SUS patients, but can also be extended to provide services in a region of the country currently has no alternatives for these technologies.
Development of a CTLA-4-Ig molecule for immunossupressant immunotherapy -
Funding: Universal CNPq/MCTI nr 10/2023
CTLA4-Ig was the first checkpoint drug approved in history, for the treatment of autoimmunity, with the original name of abatacept. A variant with two point mutations, belatacept, was later approved for transplant rejection. Both are used to this day with significant success in a good percentage of patients, and its use approved by our Public Health System, SUS, despite their high cost. In this project, we have cloned both molecules - since their patents have recently expired, and aim to produce preclinical data in order to further their manufacture in Brazil at costs that can fit the SUS budget. For that, we have collaborations with groups at the Hospital de Clinicas de Porto Alegre (autoimmunity preclinical models); and the MGH in Boston (transplant preclinical models).
Desenvolvimento de Imunoterápicos no Rio Grande do Sul Financiamento: FAPERGS RITES 2022
A ciência tem um impacto gigantesco em nossas vidas. No entanto, a maioria das pessoas não está ciente de tal influência. A ciência é a base das sociedades tecnológicas, que são hoje as mais ricas e prósperas do mundo. O programa RITES foi projetado pela FAPERGS para alimentar o desenvolvimento de redes científicas no Estado do Rio Grande do Sul, visando a transferência de tecnologia para a comunidade. Essa transferência de tecnologia pode assumir muitas formas. A educação e comunicação científica podem ajudar a qualificar profissionais de diferentes áreas, tanto do setor público quanto privado. Iniciativas empresariais podem ser ensinadas a profissionais da ciência, mas é necessário apoio para ajudar a transformar descobertas científicas em produtos com valor econômico. Nosso grupo propôs desenvolver a infraestrutura para descobrir e desenvolver novos anticorpos monoclonais que possam ser usados como medicamentos terapêuticos para câncer e infecções virais. Juntamente com diferentes parceiros, como UNISC, PUCRS, UFRGS, UCSD, USP, UFRJ e muitos outros, não apenas desenvolveremos essa pipeline, mas também educaremos e treinaremos jovens profissionais da ciência para serem empreendedores. Ao mesmo tempo, estamos trabalhando com a Secretaria de Saúde do estado para ajudar a qualificar servidores públicos em temas relacionados à ciência, como vacinação, câncer e infecção viral. Finalmente, estabelecemos uma parceria com doadores privados para construir um programa júnior de iniciação científica para estudantes de escolas públicas.
Pediatric immunity generated during SARS-COV-2 infection - Funding: PROADI 2020
This project is a partnership with pediatricians from Hospital Moinhos de Vento (Drs. Renato Stein and Marcelo Scotta). During the SARS-CoV-2 pandemic, we were able to repurpose a grant previously destined to study tuberculosis in children. The goal of the project was to characterize the immune response generated by children with COVID-19. The results were published in Lima et al., 2022. We showed that children did get infected and presented high viral titers, but did not evolve to severe disease. The immune response in pediatric COVID was characterized by early anti-N CD8+T cells and antibodies. While antibodies to S protein decreased over time, anti-N titers were maintained. Neutralizing antibody titers, measured in collaboration with UNICAMP (Drs. José Luiz Modena and Rafael Elias) were lost over 3 months after infection. Memory CD8+ TNF+ T cells that are specific for N peptides were induced early and maintained over time. Our results indicate that immunization in children against COVID-19 might benefit from vaccines that include N peptides.
Production of a monoclonal antibody against SARS-COV-2 / Development of a test for neutralizing antibodies by flow cytometry - Funding: CAPES Fármacos e Imunologia 2020
Our university is the only one in Brazil exclusively dedicated to Health Sciences. During the SARS-COV-2 pandemic, when applications were open for projects that could provide national solutions for the technical challenges imposed by the pandemic, we proposed to generate a neutralizing, anti-S protein, monoclonal antibody for the virus. We also developed a neutralization assay based on flow cytometry, as an alternative to the PRNT or FRNT assays that required NB3 facilities. We collaborated with Dr. Andre Valle, from UFRJ, and generated a fully human, neutralizing antibody using public sequences for the binding sequences. We also collaborated with Drs. José Luiz Modena and Rafael Elias to validate the FACS-based neutralization assay by PRNT. These results are being submitted for publication. Funding is necessary to further develop these products - contact us, if you wish to invest.
Immunity generated by the tetravalent live, attenuated dengue vaccine – Vacina NIH-Butantan-MSD - Funding: Ministry of Health; Butantan Institute
Immunity generated by infection is inherently different from immunity generated by vaccination. Viruses evolve strategies to infect the host involving escape mechanisms that elude the immune system; thus, immune memory generated by infection is highly variable and may not be effective in protecting against another challenge. Vaccine design involves preventing the escape strategies presented by the virus, focusing the immune responses on the molecules that are essential for infection. In Dengue disease, four viral serotypes can take turns in infecting humans, leading to repeated episodes of infection throughout the host's life. In some cases, antibodies produced in response to infection by one serotype can worsen the disease upon infection by a different serotype. This vaccine was developed by researchers Steve Whitehead and Anna Durbin, who deleted virulence sequences in each serotype's genome (Dengue 1, 2 3, and 4), creating a live attenuated dengue vaccine aiming to protect from disease caused by any of the serotypes. A live attenuated vaccine employs the same cellular and molecular routes as the wild-type virus; however, it provides enough time for the immune system to generate an adequate response. A Phase III clinical study is being conducted nationally, in 19 centers, by a partnership between Butantan Institute and MSD Pharma. Our lab has been involved in the clinical study from the start, and preserved serial samples of individuals vaccinated in Porto Alegre - a region where most individuals have never been infected by the virus - a collaboration with Dr. Fabiano Ramos, at Hospital São Lucas (PUCRS). Our goal is to characterize the kinetics and phenotype of memory T cells generated in naive individuals by this vaccine and compare that with the clinical data, looking for an immune signature that correlates with protection.
Development of oncology immunotherapeutic drugs and predictive tests for the Sistema Único de Saúde (SUS) Funding: Pronon 2019, DECIT/Ministry of Health
Partners: Santa Casa de Misericórdia de Porto Alegre
Cancer therapy has been revolutionized by immunotherapy. The use of monoclonal antibodies against cancer was initially conceived as targeting tumor cells and their antigens. Antibodies against the HER-2 molecule are an example. However, the great game-changer was the development of antibodies that target checkpoints in immune cells, enabling them to recover their anti-tumor functions. Antibodies to immune checkpoints today represent a large segment of the biotechnology and health markets because they are the first therapy able to revert metastasis in patients with advanced forms of cancer. However, not all patients respond equally to these drugs. Finally, these drugs are extremely expensive, are all imported, and are not available to patients through our Unified Health System (SUS). We are developing a national alternative to these monoclonal antibodies, so they can benefit SUS patients. Another important type of cancer therapy are drugs that target specific driver mutations in certain tumors. They can be identified using molecular biology tests - specifically, Next Generation Sequencing (NGS). These tests are also expensive and are not available to SUS patients. The best available cancer treatment thus currently depends on the genetic and immunological characterization of the tumor. We are developing an inexpensive alternative to the tests which help predict the success of the most suitable therapy. The genetic and immunological characterization of the tumors of SUS patients will create a rich dataset of information that is extremely relevant and necessary to devise new mechanisms by which tumors can evade the immune system, immune checkpoint immunotherapy, or targeted drugs. A system biology approach is used to investigate these phenomena, generating a pipeline for discovery.
Role of the ubiquitinase March1 in the immune response against cancer – Funding: CNPq Universal 2018
This project derives from one of our previous findings - described in 2018 (Borges et al., Nat. Comm. ) - on modulation of MHC class II levels in dendritic cells as a strategy to ameliorate transplant rejection. We found that graft treatment with DnaK from M. tuberculosis upregulated MARCH1 in migratory dendritic cells, leading to less antigen presentation and less rejection. We next hypothesized that inhibition of MARCH1 in dendritic cells could lead to tumor rejection. This study project is a collaboration with Dr. Thiago Borges, now an investigator at the Massachusetts General Hospital (MGH), and Dr. Leo Riella, Head of Surgery at MGH, Harvard, Boston. It has also been awarded a CAPES PDSE fellowship for one of our graduate students to work at the MGH to complete some experiments. Our preliminary results indicate that both routes of antigen presentation - MHC class II and MHC class I - are impacted when MARCH1 is knocked out in different cells. We are mapping molecular routes that mediate these effects.